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Noise-induced dephasing of an ac-driven Josephson junction
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We consider the phase-locked dynamics of a Josephson junction driven by finite-spectral-linewidth ac
current. By means of a transformation, the effect of frequency fluctuations is reduced to an effective additive
noise, the corresponding~large! dephasing time being determined, in the logarithmic approximation, by the
Kramers expression for the lifetime. For sufficiently small values of the drive’s amplitude, direct numerical
simulations show agreement of the dependence of the dephasing activation energy on the ac drive’s spectral
linewidth and amplitude with analytical predictions. Solving the corresponding Fokker-Planck equation ana-
lytically, we find a universal dependence of the critical value of the effective phase-diffusion parameter on the
drive’s amplitude at the point of sharp transition from the phase-locked state to an unlocked one. However, for
large values of the drive amplitude, saturation and subsequent decrease of the activation energy are revealed by
simulations, which cannot be accounted for by the perturbative analysis. The same effect is found for a
previously studied case of ac-driven Josephson junctions with intrinsic thermal noise. The predicted effects are
relevant to applications to voltage standards, as they determine the stability of the Josephson phase-locked
state.

DOI: 10.1103/PhysRevE.65.051116 PACS number~s!: 05.40.2a, 74.50.1r
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I. INTRODUCTION

A particle in a viscous medium, in the presence of a s
tially periodic potential, can be driven by a time-period
force at a nonzero average velocityv0 determined by the
resonance condition

2pm/v05 l /v0 , ~1!

wherev0 is the driving frequency, the integerm is the order
of the resonance, andl is the period of the potential. Thi
phenomenon was experimentally observed in the form
phase-rotating states~Shapiro steps! in small Josephson junc
tions ~JJs! driven by ac bias current@1#. Later, it was shown
that the same effect can also be realized for a fluxon~mag-
netic flux quantum! moving in a periodically modulated lon
JJ under the action of an ac bias current@2#. The latter effect
has been experimentally observed recently, in a form co
sponding to both the fundamental resonance@m51 in Eq.
~1!# and higher-order ones, in a long circular JJ with an
fective spatial modulation induced by a uniform dc magne
field @3#.

In terms of the phase differenceu of the superconducting
wave function across the junction, an ac-driven small J
described by the pendulum equation~for a detailed deriva-
tion see@4#!

d2u

dt2
1sinu52a

du

dt
1e cos@v0t1c~ t !#1 j ~ t !. ~2!

Here, time is measured in units of the inverse Joseph
plasma frequency,a is the normalized JJ conductance,e is
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the ac-current amplitude normalized to the Josephson cri
current,v0 is the normalized driving frequency,c is an ar-
bitrary phase, andj (t) represents intrinsic thermal noise
the JJ. The equation of motion for the fluxon in the abov
mentioned long circular JJ in a magnetic field takes exa
the same form in the ‘‘nonrelativistic’’ limit, i.e., if the flux-
on’s velocity is much smaller than the Swihart velocity of t
junction. The resonant relation~1!, where l 52p, implies
that, neglecting the noise, the ac drive in Eq.~2! may support
phase rotationof the pendulum at the average veloci
du/dt5v0 in the presence of friction. Below, we assume th
the spatial modulation period is always normalized so t
l[2p, i.e.,v05v0 /m. We note thatdu/dt is proportional to
the voltage across the JJ; hence the phase rotation in
ac-driven JJ gives rise to a nonzero dc voltage, a feature
is used in Josephson voltage standards~see, e.g., Ref.@5# and
references therein!.

In real applications, the driving ac signal is alwa
slightly nonmonochromatic, having a finite widthdv in the
spectral domain; in other words,c in Eq. ~2! is not a con-
stant phase, but rather a slowly varying function of tim
representing random phase fluctuations of the driving sig
This introduces a finite lifetime: of the phase-locked state
which is of direct relevance to applications, affecting t
stability of the Josephson voltage standards.

Intrinsic thermal fluctuations, represented by the termj (t)
in Eq. ~2!, also contribute to dephasing of the ac-driven m
tion. In terms of a small ac-driven JJ, the effect of therm
fluctuations was considered in earlier work@6,7#, where Eq.
~2! with the monochromatic drive and thermal noise w
reduced to a Langevin equation for a particle driven by
random force in a periodic potential. The phase-locked s
is then represented by a particle trapped at the minimum
the potential, and the dephasing implies that the particle
©2002 The American Physical Society16-1
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FILATRELLA, MALOMED, AND PAGANO PHYSICAL REVIEW E 65 051116
extracted by a random force from the trapped state. The
responding dephasing time was taken as the inverse Kra
escape rate@8#, i.e.,

:;exp~DU/T!, ~3!

where DU is the difference between maximum and min
mum values of the effective potential, andT is the tempera-
ture ~see exact definitions below!.

In this work, we focus on effects of the frequency flu
tuations in the ac drive. In Sec. II, we demonstrate that
~2! with a finite linewidth of the ac signal can be tran
formed, at the first order of perturbation theory, into an eq
tion driven by a strictlymonochromaticsignal and anaddi-
tive random force. However, in contrast to the random fo
representing the intrinsic thermal noise@ j (t) in Eq. ~2!#, the
correlator of the effective additive noise generated by the
drive’s nonmonochromaticity does not contain the fricti
coefficienta, as this correlator, which has a nonthermal o
gin, does not obey the fluctuation-dissipation theorem. N
using the energy-balance technique@2#, in Sec. III we reduce
the monochromatically driven equation with a random fo
to a Langevin equation in a periodic potentialU(u), which
makes it possible to predict the dephasing time by mean
the Kramers expression~3!.

In Sec. IV, we specially consider the situation when t
small amplitudee of the driving signal is close to the phas
locking thresholde thr @2#. By means of the Fokker-Planc
equation corresponding to the above-mentioned effec
Langevin equation@9,10#, we demonstrate that the critica
valuedv of the driving signal’s linewidth at which a shar
transition from locking to unlocking~in the form of random
2p phase slips! takes place may be represented as a univ
sal function of the drive’s amplitudee.

In Sec. V, we present results of direct numerical simu
tions of Eq.~2! with a nonmonochromatic drive, which ar
reported in a form showing the logarithm of the dephas
time : as a function ofe and of the linewidthdv. If e is
above the threshold valuee thr , and is not too large, the nu
merically found lifetime: is quite close to that predicted b
perturbation theory. However, at large values ofe the simu-
lations reveal an effect that cannot be predicted by the
turbative analysis::(e) reaches a maximum value and th
decreases. As the nonmonotonic character of the depend
:(e) and the existence of the maximum in it are quite i
portant features, in Sec. VI we report results of direct sim
lations of the mode with a strictly monochromatic drive a
intrinsic thermal~additive! noise. We conclude that the de
pendence:(e) in this case has the same nonmonotonic ch
acter. Although the latter model was studied earlier@6,7#, this
feature was not reported.

It is relevant to mention that, in addition to small and lo
JJs, essentially the same dynamical model as the one co
ered in this work applies to ensembles of oscillators coup
via a mean field, which may be laser arrays or biologi
oscillators@11#. As is known, the global coupling may syn
chronize the phase-rotation states of the oscillators, eac
them being driven by the mean field. On the other ha
various perturbations affecting the mean field make i
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slightly nonmonochromatic drive@12,13#. Thus, desynchro-
nization of globally coupled rotating oscillators is anoth
manifestation of the problem considered in this work.

II. TRANSFORMATION OF FREQUENCY FLUCTUATIONS
INTO AN ADDITIVE NOISE

We begin our analysis from Eq.~2! without intrinsic ther-
mal noise, i.e., withj 50. White-noise fluctuations of the a
drive’s frequency,v(t)[dc/dt1v0, are assumed to be sub
ject to the Gaussian correlations

K dc~ t !

dt

dc~ t8!

dt8
L 52V d~ t2t8!, ~4!

V being the intensity of the fluctuations. The relative lin
width of the ac drive,dv[(v2v0)/v0 ~calculated at23
dB level!, can then be estimated asdv'2.4V/v0. We note
that even low-quality sources of radio frequency radiatio
which may be used as the ac drive for JJs, havedv&1023,
while the dissipative constanta in JJs, although small, is
normally in the rangea*1022; therefore, we hereafter as
sumedv!a. In other words, we may assume that the ch
acteristic time of variation of the random ac drive’s pha
shift c(t) is much larger than the relaxation time 1/a.

To convert the frequency fluctuations into an effecti
additive noise, which is more convenient for the subsequ
analysis, we define a time variable that includes a slow
varying stochastic term:

t[t1x~ t ! with x~ t ![v0
21c~ t !. ~5!

Then, transforming the time derivativesd/dt into d/dt ac-
cording to this definition, making use of the above relatio
dv!a!1, and keeping the small perturbations that app
at the two lowest orders, we cast the underlying Eq.~2! into
the form

d2u

dt2
1sinu52a

du

dt
1e cos~v0t!22

dx

dt

d2u

dt2
2a

dx

dt

du

dt
.

~6!

In fact, the last term in Eq.~6! is much smaller than the
previous one, asa is small, and, as a first approximation, on
may substituted2u/dt2'2sinu in the latter term. Thus, the
final form of the perturbed equation, in which the frequen
fluctuations were converted into an effective additive rand
force, is

d2u

dt2
1sinu52a

du

dt
1e cos~v0t!12

dx

dt
sinu. ~7!

The time transformation~5! affects the Gaussian cor
relator~4!. It is easy to find that, in terms of the renormalize
time and renormalized random phasex @see Eq.~5!#, the
exact form of the correlator is
6-2
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K dx~t!

dt S 12
dx~t!

dt D 21 dx~t8!

dt8
S 12

dx~ t8!

dt8
D 21L

5
2V

v0
2

d~t2t8!

u12dx/dtu
.

However, in view of the smallness of the frequency fluctu
tions, in the lowest approximation we may adopt a sim
form of the correlator:

K dx~t!

dt

dx~t8!

dt8
L 5

2V

v0
2

d~t2t8!. ~8!

Equations~7! and ~8! will be the basis for further analysis
while numerical simulations will be run for the full underly
ing equation~2!.

III. AN EFFECTIVE LANGEVIN EQUATION AND
ESTIMATE FOR THE LIFETIME OF THE

PHASE-LOCKED STATE

In the zero-order approximation, which impliese5a
5dx/dt50, Eq. ~7! has a known solution

u0~ t !52 am@~t2t0!/k;k# ~9!

corresponding to phase rotation at a nonzero average
quency~phase velocity!

v05p/kK~k!. ~10!

Here, am is the Jacobi elliptic amplitude with the moduluk
(0,k,1), K(k) andE(k) are complete elliptic integrals o
the first and second kinds, andt0 is an arbitrary constant. In
this approximation, Eq.~2! conserves the energy, the value
which for the law of motion~9! is determined by the value o
k,

E[
1

2 S du0

dt D 2

2cosu05
2

k2
21. ~11!

The possibility of supporting persistent phase rotation a
velocity v0 in the presence of friction by a monochroma
ac drive is predicted by the energy-balance equation@2#. To
this end, we calculate the net rate of change of energy du
the action of the friction and drive, averaged over the ro
tion period 2p/v0, under the resonance condition given
Eq. ~1!:

dE
dt

52aS du0

dt D 2

1ev0v1cos~v0t0!, ~12!

where the overbar stands for the time average,t0 being the
same constant as in Eq.~9!, andv1 is the amplitude of the
resonant harmonic in the Fourier decomposition of the tim
dependent velocity~instantaneous frequency! du0 /dt, taken
as per the unperturbed law of motion~9!. An elementary
calculation yields
05111
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S du0

dt D 2

5
4E~k!

k2K~k!
, v15

2Q

11Q2
,

Q[exp@2pK~A12k2!/K# ~13!

(Q is called the Jacobi parameter!. Then a phase-locked ac
driven regime, corresponding todE/dt50, is possible at two
constant values~one stable and one unstable! of the phase
difference between the ac drive and the rotating pendulu

v0t056cos21F a

ev0v1
S du0

dt D 2G ~14!

@2#, provided that the amplitudee exceeds the threshol
value

e thr5
a

v0v1
S du0

dt D 2

. ~15!

In the presence of the additive random force in Eq.~7!, a
perturbed equation of motion for the rotating pendulum c
again be obtained from the averaged energy-balance e
tion, which has the same form as Eq.~12! with the difference
that now t0 is a slowly varying function of the timet
@roughly speaking, varying as slowly as the random ph
c(t) in the underlying equation~2!#. Notice that the time
dependence of t0 determines the change dv0
5v0(dt0 /dt) of the average phase-rotation velocity, a
the latter may be related to the change of the energy~11!,
through its kinetic part, asdE5E 8dv0, whereE 8 stands for
dE/dv0, calculated for the unperturbed law of motion give
by Eq. ~9!, E 854K2/@pk(K1kdK/dk)#). Thus, dE/dt
5E 8v0(d2t0 /dt2), and the balance equation~12! takes the
form

v0E 8
d2t0

dt2
52aS du0

dt D 2S 112
dt0

dt D1ev0v1cos~v0t0!

12v0

dx

dt
sin@u~t!#, ~16!

the second term in (112dt0 /dt) being the contribution to
the energy dissipation rate due to the small change of
average velocity, while a similar correction to the last term
Eq. ~16! is negligible. Equation~16! can be transformed into
a more convenient form by definingv0t0(t)[z(t):

v0E 8
d2z

dt2
12aS du0

dt D 2dz

dt
5F2v0aS du0

dt D 2

1ev0
2v1coszG

12v0
2 sin@u~t!#

dx

dt
. ~17!

Thus, we have arrived at an effective Langevin equat
@9# for a particle driven in a viscous medium by the sum o
regular force, represented by the terms in the large squ
brackets, and a stochastic force, represented by the last
in the equation. The subsequent step, following a w
6-3
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FILATRELLA, MALOMED, AND PAGANO PHYSICAL REVIEW E 65 051116
known procedure@9,10#, is to introduce the Fokker-Planc
~FP! equation corresponding to this Langevin equation, t
ing into account the correlator~8!. An essential feature of the
FP equation thus derived is the presence of the extra m
plier sin2@u(t)# in front of the diffusion~second-derivative!
term in it, due to the multiplier sin@u(t)# in the stochastic-
force term in Eq.~17!. The coefficient sin2@u(t)# may be
averaged in time as per the unperturbed law of motion~9!. It
is easy to calculate the average value:

sin2u0~t!5
4

3k4 F ~22k2!
E~k!

K~k!
22~12k2!G ~18!

@note that, in the limitk→0, the expression~18! approaches
an obvious value 1/2#.

The FP equation takes essentially the same form a
would take in the known problem@6,7# of the dephasing of
the ac-driven JJ phase rotation under the action of the a
tive thermal noise represented by the termj (t) in Eq. ~2! „the
most important difference of the effective Langevin equat
~17! from its counterpart in the thermal-noise problem is t
presence of the multiplier sin@u(t)# in the last term of the
equation…. With the FP equation taking the usual form, o
can directly use the Kramers expression~3! to determine the
lifetime of the ac-driven state, as was done for the case
thermal noise in Refs.@6,7#. In particular, the effective po
tential corresponding to the potential force, i.e., the expr
sion in large square brackets in Eq.~17!, is

U~z!52ev0
2v1sinz1v0aS du0

dt D 2

z;

hence the potential-barrier heightDU, which should be sub-
stituted into Eq.~3!, can be easily found as the difference
the values of the potential at two points where the abo
mentioned potential force vanishes. As a result, we obta

DU52ev0
2v1@A12~e thr /e!22~e thr /e!cos21~e thr /e!#,

~19!

where the definition~15! for the threshold value of the am
plitude has been used to simplify the expression.

However, an additional difference of the present ca
from the thermal-noise problem, which must be taken i
account before applying the expression~3!, is that the fre-
quency fluctuation intensity appearing in the correlator~8!
doesnot obey the fluctuation-dissipation theorem, and the
fore it does not include the intrinsic dissipative consta
a of the pendulum~JJ!. By properly defining the effec-
tive temperature Teff54v0

2sin2u0(t)V/aeff , where aeff

[2a(du0 /dt)2 is the effective friction constant from Eq
~17!, and using the potential-barrier heightDU ~19! and the
expression~18!, we can rewrite the Kramers expression~3!
as
05111
-

ti-

it

i-

n

of

s-

-

e
o

-
t

:;expS 6eak2EQ

@~22k2!E22~12k2!K#~11Q2!V

3@A12~e thr /e!22~e thr /e!cos21~e thr /e!# D . ~20!

This is the main prediction of the analytical consideratio
which will be compared to results of direct simulations
Eq. ~2! in Sec. V.

IV. DEPHASING THE PHASE-LOCKED STATE NEAR THE
LOCKING THRESHOLD

In this section we investigate the system described by
Langevin equation~17!, by explicitly solving the associated
FP equation. However, we can first simplify Eq.~17!, recall-
ing the fundamental physical condition according to whi
the frequency fluctuations are much smaller thana, or, in
other words, the random force varies on a time scale@1/a.
Consequently, the acceleration term on the left-hand sid
Eq. ~17! may be neglected as compared to the velocity te
which yields the simplified Langevin equation

ż52F01F1cosz1 f ~ t !, ~21!

whereF0[v0/2, F1[ev0
2v1@2a(du0 /dt)2#21, and

f ~ t ![v0
2FaS du0

dt D 2G21 dx

dt
sin@u~t!#. ~22!

The FP equation~in this case, it is, in fact, the Smolu
chowski equation@9,10#! for a probability distribution func-
tion P(z,t) corresponding to Eq.~21! with the Gaussian cor-
relator ~8! is

Pt5F1~sinz!P1~F02F1cosz!Pz1JPzz , ~23!

where the subscripts stand for the partial derivatives, an

J[sin2u0~t!FaS du0

dt D 2G22

v0
2V, ~24!

whereV is the same as in Eqs.~4! and~8!, and the average
valuesin2u0(t) is given by Eq.~18!.

Information about the distribution of the phasez can be
obtained from the stationary version of Eq.~23!,

D
d2P

dz2
52~12b cosz!

dP

dz
2b~sinz!P, ~25!

where the final set of notation isb[F1 /F0 and D[J/F0.
These two parameters are interpreted, respectively, as
ratio of the drive’s amplitude to the friction coefficient, and
FP diffusion coefficient, which is proportional to the effe
tive drive’s linewidth.

In the absence of diffusion (D50), the solution to Eq.
~s25! is

P~z!5~2p!21A12b2/~12b cosz!, ~26!
6-4
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where the normalization*2p
1pP(z)dz51 is imposed. The so

lution ~26! is regular atb,1, while the singularity atb51
exactly corresponds to the drive’s amplitude attaining
threshold value~15!, i.e., to the onset of the phase-lockin
regime.

Collecting results produced by the numerical solution
Eq. ~25!, we have concluded that it is possible to define
critical value Dcr of D, at which a sharp transition from th
phase-locked state atD,Dcr to an unlocked one atD.Dcr
takes place. The transition is still better illustrated by cons
eration of the probability fluxJ[2@DP81(12b cosz)P#,
in terms of which the time-dependent FP~Smoluchowski!
equation~23! is written asF0

21Pt1]J/]z50. At the points
of a minimum of the stationary distribution function,uJu
gives the phase-slippage rate, i.e., the rate of the trans
from the vicinity of a phase-locked point to a point differin
by a phase shift62p. In Fig. 1, we display the phase
slippage rate vsD at different constant values ofb, as found
from the numerical solution of Eq.~25!. The existence of
critical valuesDcr , such that virtually no phase slippag
takes place atD,Dcr , is evident. Note that forb,1, when
locking is impossible even for the monochromatic drive
the absence of noise (D50), Dcr does not exist. Forb51,
i.e., exactly at the locking threshold~15!, Dcr50, which can-
not be seen on the logarithmic scale used in Fig. 1. I
necessary to mention that a picture which may be interpre
as showing the fluxJ as a function ofb at different fixed
values ofD is available in@9#; nevertheless, we find it rel
evant to present Fig. 1 here, as we need to displayJ(D) at
different fixed values ofb ~otherwise the existence of th
critical valuesDcr is not obvious!.

The sharp unlocking transition can also be seen in te
of the ratio of the aforementioned minimum value ofP(z) to
its maximum value, which is attained fairly close to the u
perturbed~i.e., pertaining to the monochromatic drive! lock-
ing point. These data~not displayed here! show that the ratio
is virtually equal to zero atD,Dcr , and abruptly begins to
increase exactly atD5Dcr . In order to quantifyDcr we de-
fine it as the value ofD for which J51023.

Figure 2 shows the most important characteristic of
unlocking transition, viz.,Dcr vs the effective drive’s ampli-

FIG. 1. The phase-slippage rateJ vs the diffusion parameterD
at different fixed values of the normalized drive’s amplitudeb,
which are indicated near each curve.
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tudeb. The dependence is nearly linear, except for the reg
0,b21!1, i.e., just above the locking threshold~15!. It is
difficult to show the dependence in this region direct
therefore, in Fig. 2 we instead displayr (b) for b21!1,
wherer is defined so thatDcr is approximated by the expres
sion C1(b21)r with a suitable constantC1.

The asymptotic value ofr for b21→0 can be found ana
lytically, as one can use the exact solution~26! to describe an
approximate form of the distribution function, except in
sensitive region of smallz: P(z);1/sin2(z/2). At small z,
one can expand Eq.~25!, taking into account thatb21 and
D are now small too. This yields the equation

d2P

dh2
52S 1

2
h22

b21

D2/3 D dP

dh
2hP, ~27!

whereh[D21/3z. Thus, the solution in the sensitive regio
~which is h;1, or z;Ab21;D1/3) depends on the single
parameter (12b)/D2/3. Although the solution to Eq.~27! can
be matched to the aforementioned approximationP(z)
;1/sin2(z/2), valid at largerz, only numerically, it is obvi-
ous that, asb21→0, the dependenceDcr(b) must beDcr
5C1(b21)3/2, with C1'0.17 found from numerical data
The valuer 53/2, obtained forb21→0, is in good agree-
ment with the numerical results displayed in Fig. 2.

The linearity of the dependenceDcr(b) at largeb can be
explained in a very simple way: neglecting in this case 1
the expression (12b cosz) in Eq. ~25!, we immediately con-
clude that the asymptotic solution depends on the single
rameterb/D; hence the dependence must take the formDcr
5C2b, with a constantC2'0.14 found numerically. This
result can also be interpreted in another way: the minim
~threshold! value of the ac drive’s amplitude necessary
support the rotation of the pendulum grows nearly linea
with the linewidthdv, so that it may be approximated b
e thr(dv)'e thr

(0)(11const3dv), wheree thr
(0) is given by Eq.

~15! and the constant is roughly 1/C2.
These analytical results, which comply well with the n

merical findings, justify the introduction of the very conce
of the critical valueDcr of the phase-diffusion constant in th

FIG. 2. The normalized noise thresholdDcr vs the normalized
drive amplitudeb ~solid line!. The dashed line shows the depe
dence of the exponentr defined in the text.
6-5
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Smoluchowski equation, which was originally defined abo
in a phenomenological way, just by looking at Fig. 1.

V. NUMERICAL RESULTS

To check the limits of validity of the analytical resul
obtained above, we have performed numerical simulation
the full stochastic equation~2!, using a simple Euler schem
~the use of this scheme is considered in@9#!. As usual, we
halved the time step until the results would converge t
stable value within a few percent accuracy. In this secti
we will first focus on the case of parametric noise, so
now set j (t)50, keeping the random termc(t) in Eq. ~2!.
The basic phenomenon sought in the previous analysis
the escape from the state synchronized with the exte
drive as per Eq.~1!. However, since the JJ is driven by the
term alone, once the system is no longer phase locke
cannot sustain progressive motion and will therefore quic
decay to the zero-voltage state. So the prediction of Eq.~20!
actually refers to the lifetime of the phase-locked state;
abrupt transition from this state to the zero-voltage one~after

FIG. 3. A typical example of the evolution of the phase veloc

u̇(t) obtained from the numerical integration of the stochastic eq
tion ~2!. A loss of phase locking occurs att.300. The parameters
area50.01, e50.2, V50.01, v052.

FIG. 4. Lifetime of the phase-locked state, plotted on a logar
mic scale versus the inverse linewidth. The parameters ara
50.01, v052. The estimated slope is 0.000 31 fore50.2, and
0.0012 fore50.5.
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nabout 300 time units! is evident in Fig. 3, which displays th
time dependence of the phase velocity, found in a typical
of the simulations of the stochastic equation~2!.

To estimate the lifetime of the phase-locked state a
given ‘‘temperature’’~spectral linewidth of the drive!, we
have run the simulations for many different realizations
the random phasec(t), and averaged the results for the life
time. The number of realizations was determined by the c
dition that the computed average has to converge to an
tablished value. In Fig. 4, the logarithm of the thus compu
average lifetime is plotted versus the inverse linewidth,
that the potential barrier~19! can be estimated from the slop
of the linear part of this dependence.

This method closely follows that of Ref.@7#; the main
difference is, as already mentioned, that we are not look
for mere phase slippage, but for a jump to a state with z
average velocity. As is clearly seen in Fig. 3, this occurs a
somewhat later time than when the phase slips comme
although the difference is, typically, small~for instance, it is
less than 20 time units in the example shown in Fig. 3!.

The numerically computed effective energy barrier~rep-

-

-

FIG. 5. Dependence of the normalized energy barrierDU on the
normalized drive amplitudeb, for the case of frequency fluctuation
~a! and additive noise~b!. Symbols represent the energy barri
estimated numerically on the basis of Eq.~3! for v052 and a
50.1 ~squares! and a50.01 ~triangles!, connecting lines being a
guide for the eye. The curves without symbols represent analy
predictions, viz., Eq.~20! for the frequency-fluctuation case@in the
panel~a!, the continuous and dashed curves pertain, respectivel
a50.1 anda50.01#, and Eq.~29! for the additive-noise case.
6-6
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resented by lines with symbols! and the one predicted by Eq
~19! ~the lines without symbols! are shown in Fig. 5~a!. Tak-
ing into account that no fitting parameter was employed,
agreement is very good near the threshold value~15!, which
is e thr'0.16 for the values of the parameters correspond
to Fig. 5~a!. However, a drastic deviation from the analytic
prediction is evident at larger values of the ac drive’s am
tude: while the analytical formula~20! predicts an almos
linear increase of the effective barrier height with the
drive amplitude, the numerical results show a maximum f
lowed by a substantial decrease of barrier height.

It is relevant to mention that the nearly linear increase
the barrier height withe was predicted by the power-balanc
approach, which was employed above for the analytical c
siderations~see also Ref.@2#!; a different method, based on
harmonic expansion, would result in a nonmonotonic dep
dence of the barrier height one @6,7#. In the case of additive
noise, the latter method produced an energy barrier dem
strating a Bessel-functional behavior, typical of the
induced current steps in JJs@6,7#. In our case, however, suc
a dependence cannot be analytically justified. Moreo
even if the results of Ref.@7# are formally applied to our
case, yielding

DU'J1~e/v0
2!, ~28!

whereJ1 is the Bessel function, the maximum ofDU occurs
at a much larger value ofb @b'45, instead of 4 in Fig. 5~a!
for a50.01#. Thus, the phenomenon reported here is a
ferent one, and still remains to be explained.

It should, moreover, be noticed that a Bessel-function
proximation similar to Eq.~28! gives, according to Ref.@7#,
a good estimate for the energy barrier only in the lim
v0

22!1, deviations occurring already forv0
22.0.05. There-

fore, it is not surprising that, for the parameters conside
here (v0

2250.25), the agreement with the Bessel-functi
behavior is very poor.

To check that the dependence of the effective bar
height on the normalized drive amplitude is not due to so
particular feature of the parametric noise, we have also
r,

tt
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,

05111
e

g

-

c
l-

f

n-

n-

n-

r,

-

-

t

d

r
e
r-

formed extensive simulations of the same stochastic equa
~2!, but with additive noise and strictly monochromatic dri
ing signal, for the same values of parameters as those
above in the case of frequency fluctuations. A typical e
ample is shown in Fig. 5~b!, together with the theoretica
estimate of the energy barrier according to Refs.@6,7#:

DU52J1S b
e thr

v0
2 D @A12b222b21cos21~b21!#. ~29!

In this case too, a strong deviation ofDU(b) from the
linear dependence occurs at relatively low values of the d
amplitude (b.7), although they are higher than those in t
frequency-noise case@which areb.4, see Fig. 5~a!#.

VI. CONCLUSIONS

The results reported in this work are of relevance for a
plications to systems in which Josephson junctions are ph
locked to an external ac source, such as voltage stand
By substituting reasonable experimental values into Eq.~20!,
we can estimate that an ac source with a relative linewi
better than 1024 is needed if a lifetime of the order of 1 s is
required for the measurement system.

We also note that our approach could be applied to
other problem: a pendulum driven by an ac signal who
frequency is subject to a systematic~rather than random!
change, i.e., a zero-linewidth but variable-frequency drive
system of the latter type was considered in Ref.@14# for a
soliton in a perturbed nonlinear Schro¨dinger equation.
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